

The International School on Research Impact Assessment

Models and frameworks

Jonathan Grant RAND Europe

Learning objectives

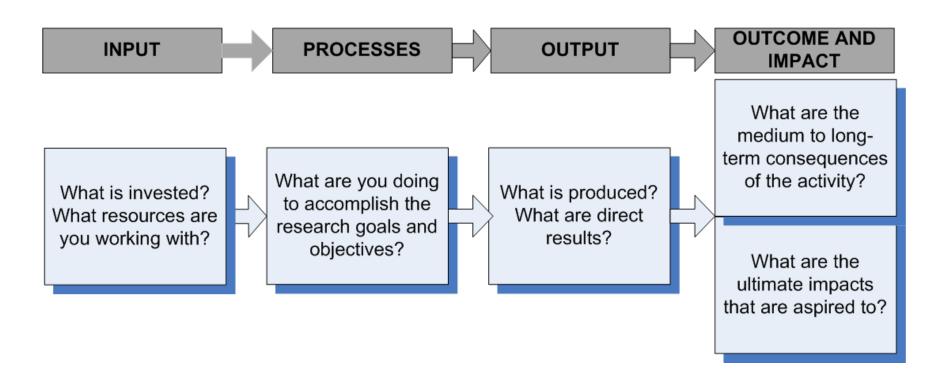
- To review various research impact assessment frameworks that have been developed by others
- To assess the different characteristics and the strengths and weaknesses of different frameworks
- To provide the wear with all to develop bespoke, fit for purpose, frameworks for specific impact assessments

Outline

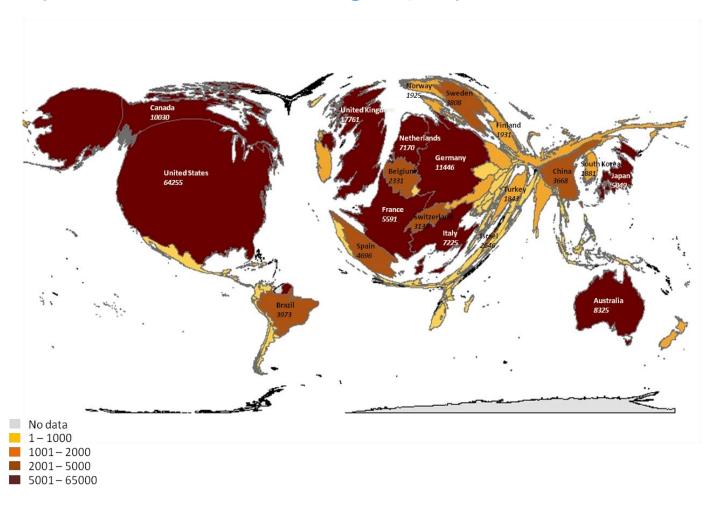
- 1. The art of conceptualization & organising information
- 2. Review of research Impact assessment frameworks
- 3. Characteristics of different frameworks

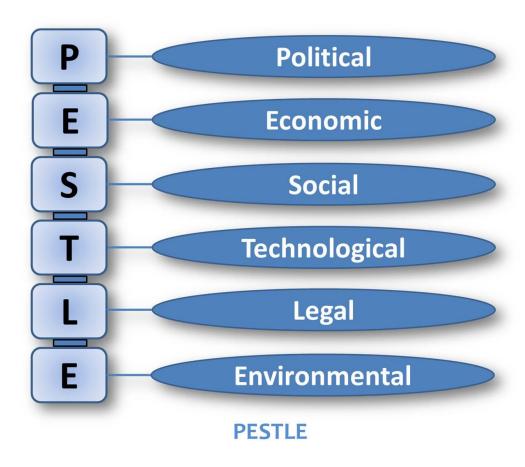
Outline

- 1. The art of conceptualization & organising information
- 2. Review of research Impact assessment frameworks
- 3. Characteristics of different frameworks

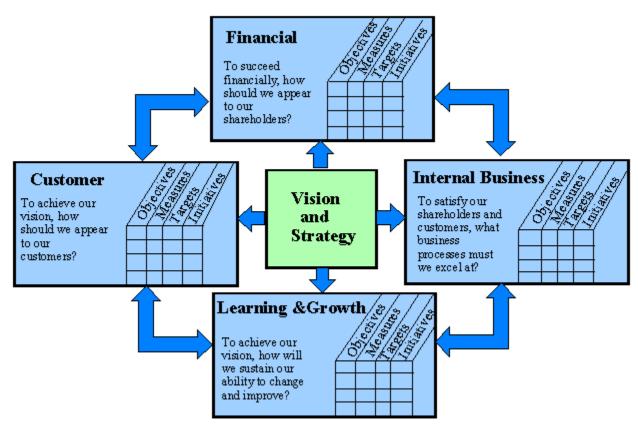

Four approaches to organising information

- By time
- By structure
- By rank
- By deductive reasoning

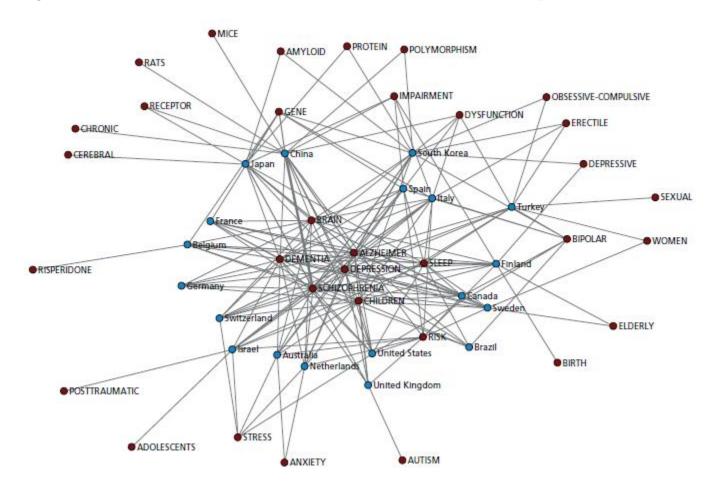

By time: Chronology


By time: Cause-effect

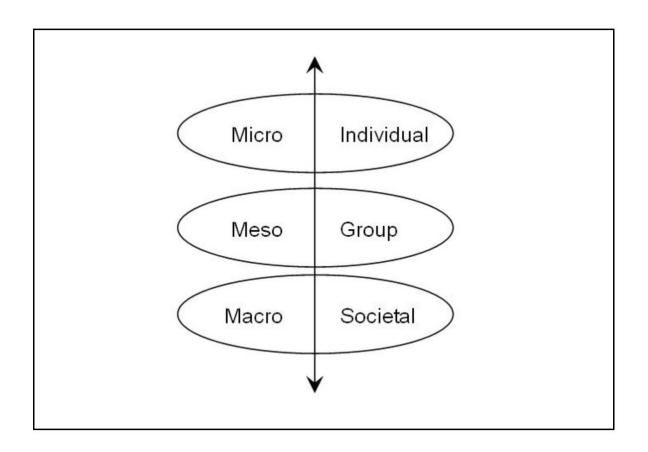
By structure: Geography



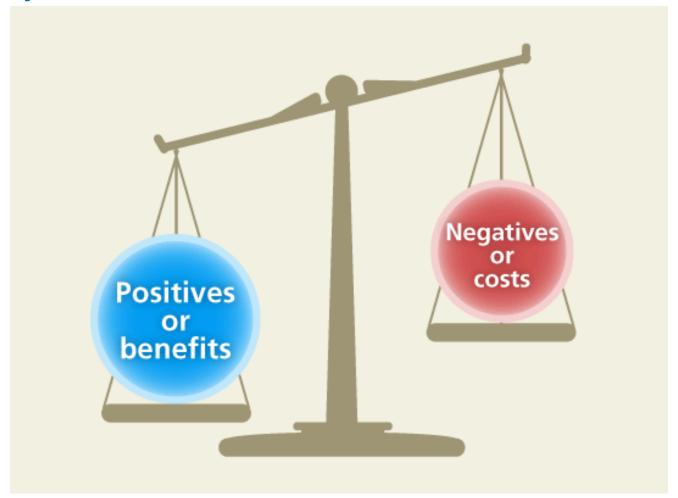
By structure: PESTLE


By structure: function

Balanced Scorecard Framework*



^{*} Adapted from Kaplan & Norton 1996. The Balanced Scarceard. Harvard Business School Press: 9. Original from HBR Jan/Feb 1996, p. 76.


By structure: Interrelationships

By rank: Macro-micro

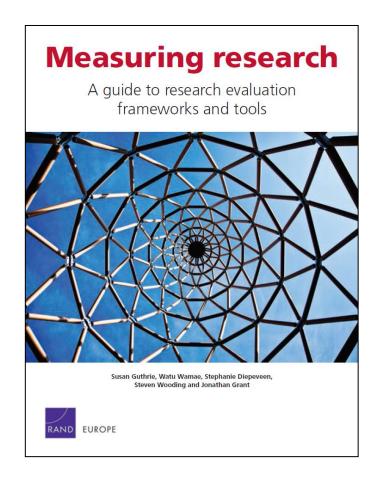
By deduction: Cost - benefit

Exercise

- In table groups discuss the organisation you work for
- Think of different ways that they could be grouped
- Think about different ways you could represent those groupings visually

Outline

1. The art of conceptualization & organising information



2. Review of research impact assessment frameworks

3. Characteristics of different frameworks

Aims of the study

- Act as a 'how-to guide' to evaluating research
 - Understand the challenges and trade-offs in evaluating research
 - Provide examples of frameworks and tools used for evaluating research internationally

Our approach

- Review of existing frameworks and tools for the evaluation of research
- Analysis of the characteristics of tools and frameworks using a factor analysis approach
- Developed decision tree to aid development of customised research evaluation frameworks

We reviewed six frameworks ...

 Research Excellence Framework (REF), UK – assesses performance of UK universities to determine funding allocation

 STAR METRICS, US – uses data mining and other low burden methods to account for federal R&D spending

• Excellence in Research for Australia (ERA), AU – uses bibliometrics, and other quantitative indicators, to map R&D output

 Canadian Academy of Health Science (CAHS), CA – aims to provide consistency and comparability while retaining flexibility

 National Institute of Health Research (NIHR) Dashboard, UK – provides performance management information at various levels of aggregation

 Productive Interactions, EU – flexible approach to help institutions learn and improve their performance against their own goals

... and ten tools

- Bibliometrics
- Surveys
- Logic models
- Case studies
- Economic analysis
- Peer review
- Data mining
- Interviews
- Data visualisation
- Site visits
- Document review

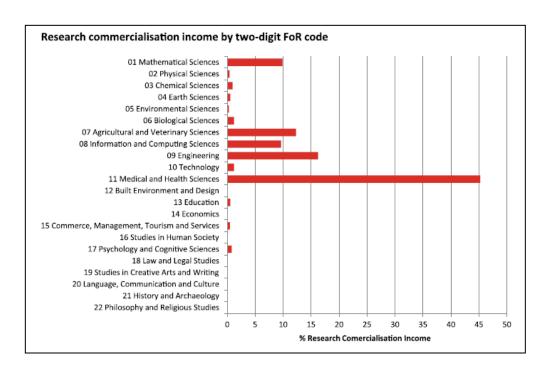
We reviewed six frameworks ...

 Research Excellence Framework (REF), UK – assesses performance of UK universities to determine funding allocation

 STAR METRICS, US – uses data mining and other low burden methods to account for federal R&D spending

 Excellence in Research for Australia (ERA), AU – uses bibliometrics, and other quantitative indicators, to map R&D output

 Canadian Academy of Health Science (CAHS), CA – aims to provide consistency and comparability while retaining flexibility


 National Institute of Health Research (NIHR) Dashboard, UK – provides performance management information at various levels of aggregation

 Productive Interactions, EU – flexible approach to help institutions learn and improve their performance against their own goals

Accountability – to taxpayers & donors

Excellence in Research for Australia (ERA)

Origin and rationale:

Perceived need to include assessment of quality in block funding allocation (previously volume only). Advocacy purpose - demonstrate quality of Australian research

Scope:

Assesses quality, volume, application of research (impact), and measures of esteem for all Australian Universities at disciplinary level

Measurement:

Indicator approach, uses those appropriate at disciplinary level. Dashboard provided for review by expert panel

Application to date:

First round in 2010, broadly successful. Next round 2012, with minor changes. Intended for funding allocation, but not used for this as yet

Analysis:

Broadly positive reception. Meets aims, and burden not too great.

Limitation is the availability of appropriate indicators

Wider applicability:

Should be widely applicable, criticism limited in Australian context. Implementation appears to have been fairly straightforward

SWOT analysis for ERA

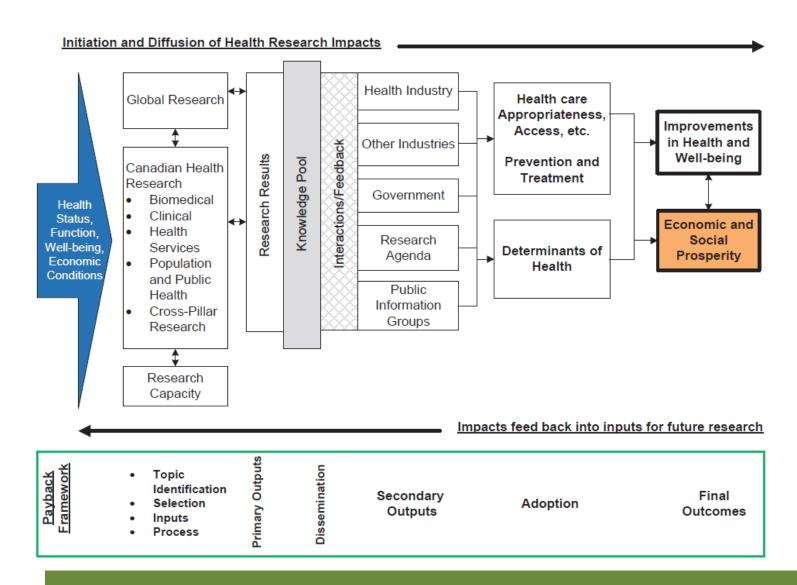
Strengths

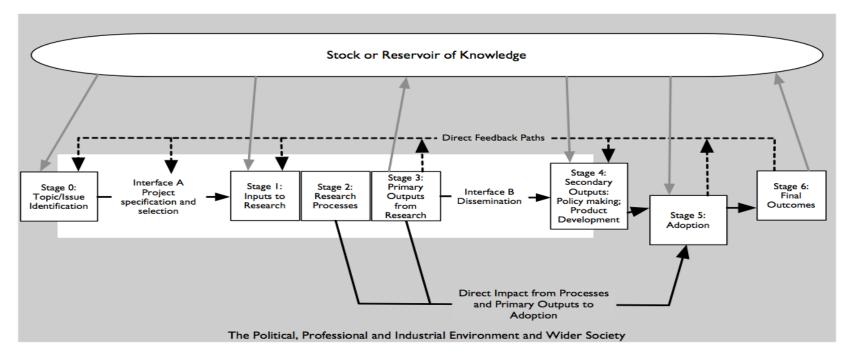
- Acceptable to research community in Australia
- · Burden on participants is moderate
- Indicator driven
- Produces a single performance indicator, which can be used for ranking
- Multi-disciplinary

Weaknesses

- Indicator driven
- Still moderated through peer review, reducing objectivity
- Not comprehensive academic focus
- Summative
- Burden relative to return is high (not yet used for funding allocation)
- Requires some central expertise (bibliometric expertise on panel)

Opportunities


Potential to add new indicators


Threats

- No funding implications
- Politics informed its development
- Government and public appetite to include impact is limited in Australia (limits potential for development)

Canadian Academy of Health (CAHS)

The Payback framework

Adapted from Hanney S, Gonzalez-Block M, Buxton M and Kogan M, The Utilisation of health research in policy-making: concepts, examples and methods of assessment. Health Research Policy Systems 2003, 1:2

- Knowledge Production
- Research Targeting, Capacity Building

- Informing Policy or Product Development
- Sectoral Benefits (Social, Health, Environmental, Cultural)
- Broader Economic Benefits

- Knowledge production
 - Traditionally more academic focussed, can't be used for impact
 - Can provide useful starting points to trace impact forward
 - Indicators¹: citation impacts; shares of publication
- Research capacity building
 - Elements which build future research capacity
 - Aids absorption of knowledge by the system
 - Indicators: Research resources; New methodologies; Career development of collaborators (outside academia); Leveraged funding

- Informing policy development or practice
 - Looks at impacts in both processes and policy outcomes
 - Policies and practice might change at multiple levels
 - Impacts include change in advice given by professional bodies; changes in professional practice within a sector; changes to training policies or guidelines
 - Indicators: Use of research in guidelines; Media citation analysis;
 Citations in advocacy guidance; Requests for research to support policy development
- Informing product development
 - Identify concrete steps in the commercialisation process
 - Trace proof of concept research through to clinical trials
 - Indicators: Citations in a patent, patent applications, contributions to a website

- Sectoral benefits (health, education, environment, cultural)
 - Identifies ways that sectors and user communities have gained from the research
 - Can include impacts from broader public knowledge creation
 - Indicators: More equitable access to services; Cost-savings within a sector;
 Health gains; Preservation of cultural heritage
- Socio-economic benefits
 - Economic benefits from the processes of product, policy, or professional development
 - Economic benefits from a healthier or more enriched society (eg increased productivity, lower crime rates, healthier society)
 - Impacts affecting the welfare, profits and revenues of individuals or organisations involved in the research
 - Indicators: improved efficiency or effectiveness of services due to research;
 commercialisation gains; well-being measures; gains in socio-economic status of communities

Canadian Academy of Health (CAHS)

Origin and rationale:

Draws on well established 'Payback' framework. Aims to improve comparability across a disparate health research system. Covers wide range of impacts

Scope:

Five categories: advancing knowledge; capacity building; informing policies and product development; health and health sector benefits; broader economic benefits.

Application to date:

Used by public funders; predominantly CIHR (federal funder), but there has also been some uptake by regional organisations (e.g. Alberta Innovates)

Measurement:

Specific indicators for each category. Logic model has 4 research 'pillars': Biomedical; Clinical; Health services; Social cultural, environmental and population health

Analysis:

Strengths: generalisable within health sector, can handle unexpected outcomes. But understanding needed at funder level - may limit uptake. Early stages hard to assess

Wider applicability:

Breadth, depth and flexibility mean framework should be widely applicable. However, it only provides a guide and needs significant work to tailor to specific circumstances

SWOT analysis for CAHS

Strengths

Very comprehensive Flexible

Developed through engagement, and has strong buy-in

Formative

Looks at process as well as outputs and impacts

Concept of an indicator library

Aligned with main funders, framework

Opportunities

Unified but flexible approach Potential to build an indicator platform and toolkit

Built on an internationally recognised framework - opportunity for international uptake and wider comparability

Weaknesses

Resource intensive

Complicated

Not easily comparable

Implementation challenging

Developed by committee

Requires participant expertise

Not ranking – hard to use to allocate funding

Large burden on participants

Not multi-disciplinary

Definitional ambiguity between outputs and

outcomes

Threats

No implementing owner

Slow uptake

Dependent on CIHR endorsement

National Institute of Health Research Dashboard

∃ Turabi et al. Health Research Policy and Systems 2011, 9:13 http://www.health-policy-systems.com/content/9/1/13

RESEARCH Open Access

A novel performance monitoring framework for health research systems: experiences of the National Institute for Health Research in England

Anas El Turabi^{1,2*}, Michael Hallsworth³, Tom Ling² and Jonathan Grant²

The International School on Research Impact Assessment

Disbursement

 % of planned expenditure disbursed

Cost per output

- · Cost per publication
- Cost per participant recruited into clinical research
- · Cost per trainee

Financial governance

 Expenditure audited and signed off by NIHR

Completion

- % of research projects completed to plan
- £s spent on project extensions

Quality

 Bibliometric data for NIHR programmes, including: Number of peer reviewed papers; Number of reviewed.

polications

Supp

- sustainability running
- % trainees completing research training

Corporate and risk reporting

- Corporate business metrics not otherwise covered (currently being defined with DH)
- Issues escalated for monitoring by NIHR Senior Management Team

achieving illestones set out in

- Number of people participating in NIHR trials
- % of NIHR-linked trials within 5% of recruitment plan

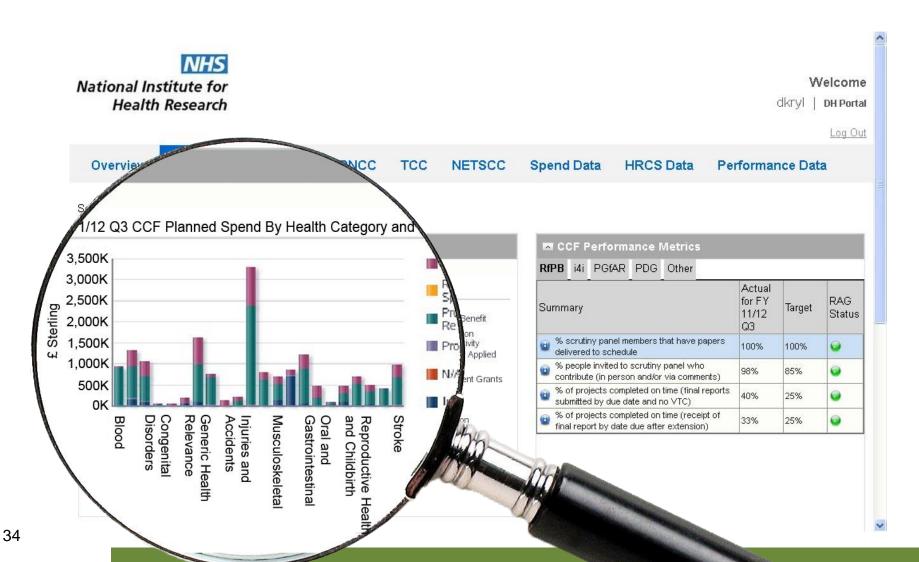
Attention

- Number of parliamentary questions relating to NIHR
- NIHR-related news stories in the national media

Avera

- resear

 Number or
- Number of a passports active
- Pages access NIHR portal


Reputation

- NIHR reputa surveys:
 - -NHS
 - -Academi
 - -Industry
 - -Patients a

Impact

 Major research achievements that have the potential to improve health and social care - highlights and milestones

The Dashboard is incorporated into MIS

National Institute of Health Research Dashboard

Origin and rationale:

Aim is to develop a small but balanced set of indicators to support strategic decision making, monitoring performance on regular ongoing basis

Scope:

Data collected quarterly at programme level on inputs, processes, outputs and outcomes for 3 elements – financial, internal process, and user satisfaction

Application to date:

Launched July 2011 NIHR-wide, with data to be provided by the four coordinating centres, analysed and aggregated centrally

Measurement:

Programme specific data can be pooled to provide a system level dashboard. 15 indicators selected, matching core aims, collected quarterly

Analysis:

Designed to fit strategic objectives, so in that sense likely to be effective. However, only just launched, so detailed analysis premature

Wider applicability:

Should be applicable to other national health research funders. Performance indicators selected can be tailored to assessment needs

SWOT analysis for NIHR Dashboard

Strengths

Aligned with institutional goals

Bespoke

Formative

Can be used for monitoring (frequent

assessments)

Wide applicability

Strong theoretical basis

Comparable

Focused and selective set of indicators

Indicator set is balanced

Continuous burden (not episodic)

Opportunities

Flexibility may allow use across multiple institutions

Useful at many levels

Weaknesses

High central burden

Bespoke

Reliant on information management

systems

High up from burden

High level of central expertise required

Not comprehensive if incorrectly used – it

only

monitors the indicators you select

Continuous burden (not episodic)

Not multi-disciplinary

Threats

Scalability across multiple institutions not

demonstrated

New and not fully implemented

Exercise

- Take one of the remaining frameworks
 - UK REF, US Star Metrics, EC Productive Interactions
- Review its characteristics
- Identify its strengths, weaknesses, opportunities and threats
- Fill in the A1 sheet and be prepared to present back to the group

Research Excellence Framework (REF)

Origin and rationale:

Evolved from its predecessor, the RAE, and the RQF. Intended to be low burden, but pressure from researchers led to changes. Includes wider societal impact

Scope:

Assessment at subject level on 3 elements:

- -Quality of research outputs
- -Impact of research (not academic)
- -Vitality of environment

Application to date:

Piloted 2009. First round of assessment 2014, results will determine funding allocation.

Measurement:

Assessment by subject peer review panel of list of outputs, impact statement and case studies, and statement on research environment

Analysis:

Burden not reduced, but adds wider impact to evaluation. Originally metrics based, but this was dropped as too unpopular

Wider applicability:

Suitable for similar cross institutional assessment of performance. High burden on institutions, arguably expensive, so best for significant funding allocation uses $_{28}$

The International School on Research Impact Assessment

SWOT analysis for REF

Strengths

Burden relative to return is low (determines significant funding allocation) Acceptable to UK academic community as it uses peer review Comprehensive (includes impact)

Multi-method

Multi-disciplinary

Successfully piloted, and many elements well tested

Produces a single performance indicator which can be used for ranking

Opportunities

Potential to move towards indicators Move towards impact in UK and internationally Increased focus on public accountability in UK

Weaknesses

Cost

Total burden s high

Can discriminate against some types of researchers

Can discriminate against some types of institution

Summative

Scalability not demonstrated

Not transparent

Almost solely reliant on peer review – limits objectivity

Threats

Non-participation

Political

Reductions in research funding may limit ability to fund

to match the quality demonstrated

Could result in research concentration

STAR METRICS

Origin and rationale:

Key aim to minimise burden on academics; Helps to meet US federal accountability requirements

Scope:

Two levels:

- Level 1- number of jobs supported
- Level 2- range of research funded, researcher interactions, and wider impacts

Application to date:

Level 1 rolled out to 80 universities Level 2 still under development. Voluntary participation - full coverage unlikely

Measurement:

Data mining approach, automated. At present, only gathers jobs data.

Methodologies for level 2 still being developed

Analysis:

Feedback generally positive, but feasibility of level 2 not proven

Wider applicability:

Potentially very wide depending on success of Level 2. There has been international interest, eg Japan, EC

The International School on Research Impact Assessment

SWOT analysis for STARMETRICS

Strengths

Data mining approach is relatively novel Low participant burden once set up Not a ranking approach – does not produce a single indicator of comparative performance

Weaknesses

Not fully developed and tested High initial burden, and expertise required to establish

Approach beyond Level 1 not proven Level 2 will depend on quality of data input Level 1 focused entirely on jobs for money input (not comprehensive) Summative (at present)

Not a ranking approach – does not produce a single indicator of comparative performance

Opportunities

Data mining
Harmonisation between funders
ARRA (Phase 1)
International interest

Threats

Non-participation (not compulsory)

Productive Interactions

Origin and rationale:

Measures productive interactions, defined as interactions with stakeholders that lead to change. Assessment against internal goals intended for learning.

Scope:

Intended to work in a wide range of contexts, best applied at research group or department level where goals are consistent

Application to date:

Piloted across diverse disciplines and contexts in four European countries and at the EC level. No plans to roll out more widely at present

Measurement:

Three types interaction: direct personal contacts; indirect (e.g. via a publication), financial. Engages users, findings assessed against internal goals

Analysis:

Tailored, so should help improve performance. No comparative ranking. Requires significant work from participants to generate their own set of goals and indicators

Wider applicability:

Indicators developed to meet goals, so widely applicable, but does not produce comparison between institutions, so not appropriate for allocation, and could be challenging to use for accountability

SWOT analysis for Productive Interaction

Strengths

Formative

Sensitive to institutional goals

Avoids perverse incentives

Comprehensive

Flexible

Some tools and 'how to' guides being

developed

Avoids time lag interaction to impact

Avoiding time lag reduces bias against

early career researchers

Multi-disciplinary

Opportunities

Piloted in a range of countries and disciplines

Could support strategic thinking about impact

Weaknesses

High burden

Not comparable (between institutions)

Challenging to implement

Requires assessors to identify productive

interactions

Assumes interactions are a good indicator

of impact

Threats

Scalability

No implementing owner

Needs to move from research to

operationalisation

No developing owner – what will happen

now FP7 grant funding has run out?

Outline

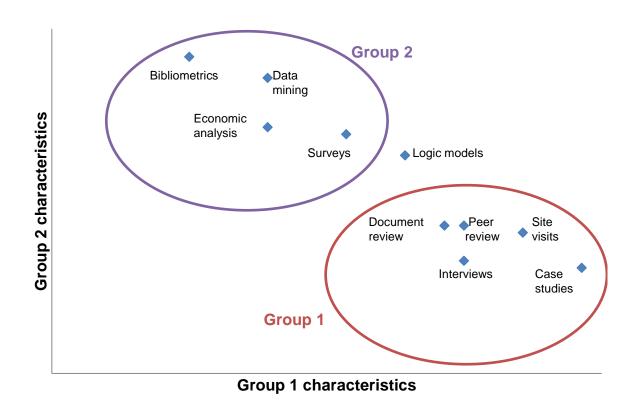
- 1. The art of conceptualization & organising information
- 2. Review of research Impact assessment frameworks

3. Characteristics of different frameworks

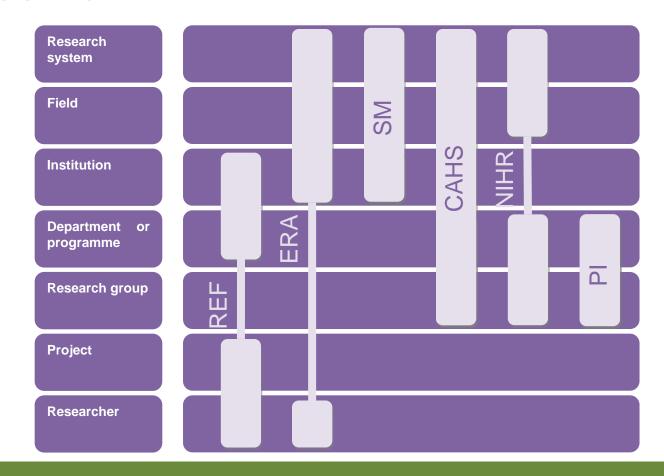
Key findings of analysis

- There is no silver bullet
- The framework should be designed based on the purpose of the evaluation
- Research evaluation tools typically fall into one of two groups
- There is a range of possible units of aggregation
- There are some perennial challenges to research evaluation that need to be addressed
- Research evaluation approaches need to suit their wider context
- Implementation needs ownership and the right incentives and support

There is no silver bullet


Designing a research evaluation framework requires trade-offs:

- Quantitative approaches tend to produce longitudinal data, do not require judgement or interpretation and are relatively transparent, but they have a high initial burden
- Formative approaches tend to be comprehensive, evaluating across a range of areas, and flexible, but they do not produce comparisons between institutions
- Approaches that have a high central burden tend not to be suitable for frequent use
- Approaches that have been more fully implemented tend to have a high level of central ownership
- Frameworks that place a high burden on participants require those participants to have a high level of expertise (or should provide capacity building and training to achieve this)

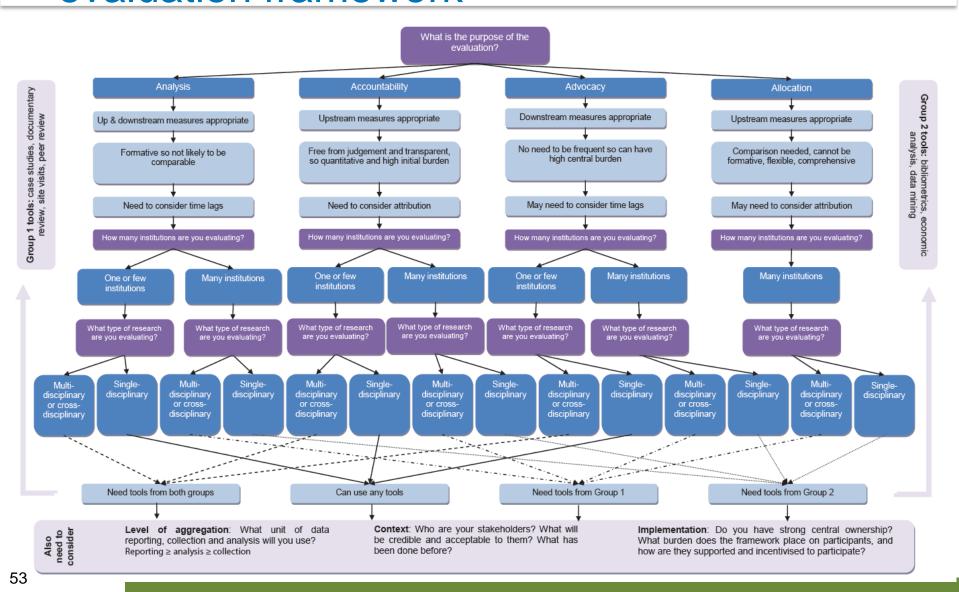

The framework should be designed based on the purpose of the evaluation

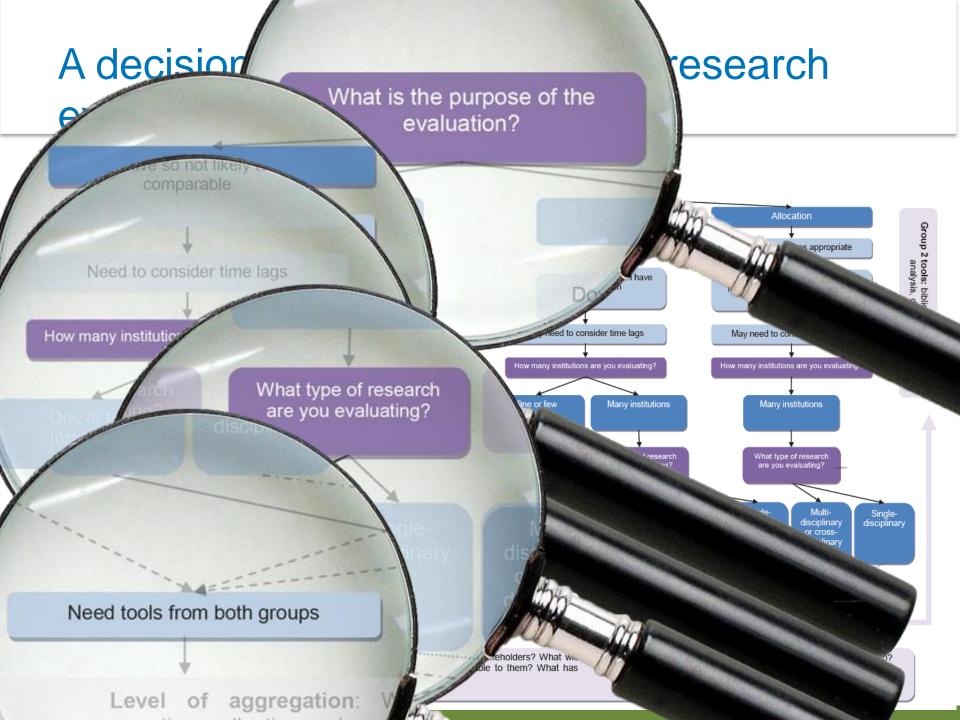
- Analysis What works in research funding?
- Advocacy 'make the case' for research funding
- Accountability To taxpayer, donors, etc.
- Allocation What to fund (institution, field, people ...)

Research evaluation tools typically fall into one of two groups

There is a range of possible units of aggregation

There are some perennial challenges to research evaluation


Research evaluation approaches need to suit their wider context


- Acceptability and credibility
- Differences between countries
- Need to ensure framework does not discriminate.

Implementation needs ownership, the right incentives and support

- Where compulsory, the challenge is to obtain support from the academic and wider community
- Where participation is voluntary, incentives need to be in place to promote and sustain uptake
- In both cases, participants need to be given the skills necessary for the process, through simplicity, training or a toolkit
- In all cases, strong central ownership is needed for effective large-scale implementation

A decision tree for developing a research evaluation framework

Key messages

- Know why you are measuring research
 - What is the objective of the research evaluation?
- Use a 'multi-method, multi-dimensional' approach
 - Don't rely on one method (e.g., bibliometrics)
- (Research) measurement is not easy
 - No (research) funder has the answer
- Need to move from advocacy to accountability
 - Need 'science of science' to understand what works
 - Need a practical evidence base for science policy

Questions and discussion

